Data Pipeline Engineering

4/8

Pipeline Architecture

Data Ingestion

Load CSV → Train/Test Split → Save Artifacts

Data Transformation

Imputation → Encoding → Scaling → Pipeline

Model Training

Multiple Models → Hyperparameter Tuning → Best Model Selection

Prediction Pipeline

Load Model & Preprocessor → Transform Inputs → Predict

Implementation Highlights

Data Transformation Pipeline

# Feature engineering with scikit-learn pipeline num_pipeline = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="median")), ("scaler", StandardScaler()) ] ) cat_pipeline = Pipeline( steps=[ ("imputer", SimpleImputer(strategy="most_frequent")), ("encoder", OneHotEncoder()) ] ) preprocessor = ColumnTransformer([ ("num", num_pipeline, numerical_cols), ("cat", cat_pipeline, categorical_cols) ])

Features Processing

Numerical Features 3 features
Categorical Features 5 features
One-Hot Encoded 15 dimensions
Final Feature Space 18 dimensions

Artifacts Management

train.csv & test.csv
preprocessor.pkl
model.pkl
Modular architecture